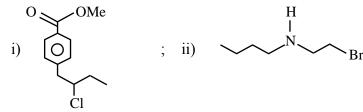
RAMAKRISHNA MISSION VIDYAMANDIRA

(A Residential Autonomous College under University of Calcutta)

First Year, Second Semester (January – June), 2011 Mid-Semester Examination, March, 2011

CHEMISTRY (Honours)

Date : 9 March 2011 Full Marks : 50


Time: 11am - 1pm

(Use separate answer script for each group)

Group - A

Answer any three questions:

1. a) Write the IUPAC name of the following compounds:

b) Comment on the following S_N^2 reaction rate with I \bigcirc

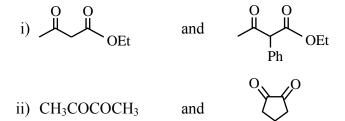
alkyl chloride relative rate

O-02

Cl 79

1 200 [2+3]

- 2. a) Cite an example of a S_N^2 reaction which is attended by racemisation. On the basis of the result how would you proceed to draw the conclusion regarding the stereochemistry of S_N^2 reaction.
 - b) Predict the major product of the following reactions:


$$O^{\Theta}Na^{+}$$

$$Cl \qquad Column Co$$

c) Comment on the relative nucleophilicity of RS⁻ and RO⁻.

[2+2+1]

- 3. a) Carry out the following conversion:
 - (R) 2-butanol \longrightarrow (S) 2-butanol
 - b) Write the structures of keto and stable enol forms of 2,4-pentanedione. The enol content of this dicarbonyl compound is 92% in n-hexane and 15% in water— Explain. [3+2]
- 4. a) Which one of the following pair has higher enol content? Justify your answer.

b) Give the structure of A

$$CH_3CH = CH_2 + H^+ \longrightarrow A$$
 [(2+2)+1]

- 5. a) Between H₃C[•] and F₃C[•] which one is bent and why?
 - b) Cyclopropylmethyl cation is more stable than benzyl cation— explain.
 - c) What is state of hybridisation of the radical carbon in the following structure.

Group - B

Answer any four questions:

6. a) Construct the correct Lewis structures of—
[ONC⁻] and [NCO⁻] and assign formal charges to each atom of each species.

b) Explain the solubility of NaClO₄ and KClO₄ in water.

[3+2]

[2+2+1]

- 7. a) Write down the differences of Lithium with other alkali metals.
 - b) Sketch the box diagram and explain the bonding and hybridisation of carbonate ion.

[3+2]

- 8. a) i) Arrange the increasing order of bond angle in NO⁺, NO, NO⁻
 - ii) Explain the structure of ClF₃ with the help of Bent's rule
 - b) K^+ and F^- have almost similar radii but which one posses higher hydration energy? Explain. [(1.5+1.5)+2]
- 9. a) Compare the alkali metals with respect to their physical properties.
 - b) CO₂ is linear but SO₂ is a bent molecule. Explain.

[3+2]

- 10. a) Explain the solubility of covalent HCl compound in water thermodynamically and chemically. Ionisation energy of hydrogen is 1311 KJ mol⁻¹, electron affinity of chlorine is 348 KJ mol⁻¹ Hydration energy of H⁺ and Cl⁻ is 1091 and 381 KJ mol⁻¹.
 - b) i) Write down the uses of Lithium.
 - ii) How can you detect the presence potassium ion chemically with proper chemical equation. [3+(1+1)]
- 11. a) What do you mean by radius ratio and what information can be obtained from radius ratio.
 - b) Write notes on Covalent Hydrides.

[3+2]

Group – C

Answer any three questions:

[5+5=10]

- 12. a) Show that the two statements of 2nd law of thermodynamics Kelvin Planck and Clausius are equivalent.
 - b) Give the molecular interpretation of entropy.

[4+1]

- 13. a) What is efficiency of an engine?
 - b) 0.5 mole of an ideal monatomic gas initially at 5 atm. pressure and 0°C is allowed to expand against a constant external pressure of 0.5 atm. Conditions are such that the final volume is 10 times the initial volume; the final gas pressure equals the external pressure.

Calculate ω , ΔE , ΔH and ΔS for the process.

[1+4]

14. a) An ideal gas is subjected to the following reversible cycle in the given steps:

Step I: Isobaric expansion, Step II: Adiabatic expansion,

Step III: Isobaric compression, Step IV: Adiabatic compression

Draw the TS diagram for the above cycle.

b) Show that if A undergoes two simultaneous reactions producing B and C according to $A \xrightarrow{k_1} B$, $A \xrightarrow{k_2} C$ then E_a , the observed activation energy for the disappearance of A is given by $E_a = \frac{k_1 E_1 + k_2 E_2}{k_1 + k_2}$

where E₁, E₂ are the activation energies for the 1st and 2nd reactions, respectively.

[2+3]

15. a) Consider the following reversible reaction, 1st order in both the reactions A $\frac{R_1}{k-1}$ B

Derive that $(k_1 + k_{-1})t = \ln \frac{x_e}{x_e - x}$

b) What are the characteristics of a zero order reaction?

[3+2]

- 16. a) Draw a rough energy profile diagram to distinguish kinetically and thermodynamically controlled product. Mention the activation energy and rate constants.
 - b) The reaction $A \to P$ gives a linear plot of $\frac{1}{[A]}$ vs. time, of intercept 100 lit mol⁻¹ and slope 3×10^{-2} lit mol⁻¹ sec⁻¹. What is the order of reaction? Calculate the $t_{\frac{1}{2}}$ of the reaction. [2+3]

